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Abstract
In FY96 we released CHEETAH 1.40, which made extensive improvements on the

stability and user-friendliness of the code. CHEETAH now has over 175 users in
government, academia, and industry. Efforts have also been focused on adding new advanced
features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new
chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete
thermodynamic equilibrium and independence of time. The addition of a chemical kinetic
framework will allow for modeling of time-dependent phenomena, such as partial combustion
and detonation in composite explosives with large reaction zones. We have implemented a
Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of
nonideal detonations and explosive failure. A second major effort in the project this year has
been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of
state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the
code to experimental data.

Overview: Kinetics in CHEETAH
There is a continuing need in the energetic materials field for reliable predictions of

detonation velocity and energy delivery. This traditionally has been accomplished through the
use of thermochemical codes, which implement Chapman-Jouget thermodynamic detonation
theory. Chapman-Jouget detonation theory assumes that thermodynamic equilibrium of the
detonation products is reached instantaneously.

So-called “nonideal” explosives, (e.g., heterogeneous composites) are often poorly
modeled by Chapman-Jouget theory. The poor performance of thermochemical codes when
applied to these problems is usually attributed to the relatively long reaction times of these
materials (microsecond timescales) as compared to most homogeneous condensed explosives
(20-nanosecond timescale). In this case, the Chapman-Jouget assumption of instantaneous
thermodynamic equilibrium breaks down.

We are therefore forced to consider the interaction of chemical kinetics with the
detonation wave in order to reach an acceptable representation of detonation in nonideal
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explosives. Zeldovich, Von Neumann, and Doring1 independently arrived at the “ZND”
theory of detonation in the 1940s. In ZND theory a plane wave detonation is considered. The
state of the system proceeds from the intersection of the unreacted shock Hugoniot with the
Rayleigh line to the CJ state as the chemistry proceeds. ZND theory correctly predicts the
existence of a high pressure transient preceding the CJ state. The plane wave nature of the
system considered, however, guarantees that the CJ state is always reached; another
consequence is that the detonation velocity in ZND theory is always the same as that of CJ
theory.

It is found experimentally, however, that the detonation velocity of nonideal
explosives varies sharply from the CJ value. Moreover, the detonation velocity in nonideal
explosives is observed to be a strong function of charge diameter. Wood and Kirkwood
(WK)2 proposed a two-dimensional steady state kinetic detonation theory that solves many of
the limitations of ZND theory. Wood and Kirkwood theory considered a cylindrical charge of
infinite length. They solved the hydrodynamic Euler equations in the steady state limit along
the central streamline of the cylinder. Radial expansion was treated as a source term in the 1-D
flow along the streamline.

We have implemented three kinetic calculation types in the CHEETAH
thermochemical code. The first type is general purpose kinetics. In this type of problem, the
calculation is assumed to be at a fixed thermodynamic state (e.g., fixed P,T or fixed V,E).
General-purpose kinetics are not specific to detonation and can be used to treat other sorts of
problems, such as deflagration and nondetonating explosions. The second type of calculation
is ZND theory. The third calculation type is WK theory, which includes the effect of radial
expansion on the detonation velocity. CHEETAH implements ZND theory as a special case of
WK theory where the radial expansion has been set to zero.

General-Purpose Kinetics

CHEETAH can model a wide variety of chemical processes using its general-purpose
kinetics capability. In general-purpose kinetics, CHEETAH describes a spatially
homogeneous reaction cell. Some people familiar with hydrodynamic codes like to think of
this cell as a zone in a hydrodynamic simulation, but there is really no concept of the size of
the cell. This cell is held at a constant thermodynamic state. The constant thermodynamic state
is defined by holding any two thermodynamic variables that CHEETAH recognizes (e.g., P ,
V, T, E, H, A, G, S) constant. A wide variety of problems can be modeled with this
framework. For instance, combustion in a bomb calorimeter is described by holding V and E
constant. Combustion in an idealized internal combustion engine is described by holding P
and H constant.

The second important concept in the kinetics capability is the partitioning of reactions
into a fast subgroup and a slow subgroup. This partitioning is used in recognition of the fact
that chemical reaction rates at high pressures and temperatures are largely unknown. It is
therefore very difficult, if not impossible, to create a valid kinetic description of every reaction
occurring in the reaction cell. It is often the case, however, that a few very slow reactions can
be identified. For instance, the precipitation of solid products or the combustion of a solid
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particle can be modeled with simple transport-limited models that should work well even in
the high-pressure regime.

For each rate specified, we give a stoichiometric equation:

A x B yi i i i↔ ∑∑ . (1)

Here, the Ai are the stoichiometric coefficients of the reactant species xi, while the Bi

are the stoichiometric coefficients of the product species yi. As an example, a reaction rate for
the consumption of the HE molecule HMX may be specified as:

HMX CO H N O↔ + + +4 4 4 22 2 2 . (2)

In a typical application, we would choose only HMX to be kinetically controlled,
since its consumption controls the detonation process. The gas molecules CO, H2, N2, and O2

are assumed to undergo rapid chemical reactions that maintain instantaneous chemical
equilibrium with other product molecules in the calculation (e.g. CH4).

Kinetic CHEETAH supports multiple reaction rate laws. We have implemented in the
code a simple constant reaction rate:

dF

dt
A F= −( )1 . (3)

Here F is the reaction coordinate, which varies from 0 (all reactant) to 1 (all product).

We have also implemented simple Arrhenius kinetics:

dF

dt
A T T F= − −exp( / )( )* 1 , (4)

as well as a pressure-dependent rate law describing surface controlled reactions:

dF

dt
AP F Fa b c= −( )1 . (5)

Finally, we have implemented the hot spot model of Johnson, Tang, and Forrest.3

In Cheetah’s kinetic module only forward reactions are specified. The backward
reaction is calculated through the detailed balance condition

R RT Rb f= exp( / )∆µ . (6)
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The reaction affinity ∆µ is the chemical potential difference between the reactants and
the products:

∆µ µ= ∑ai i . (7)

The µ is calculated at fixed concentration with Cheetah’s thermodynamic capabilities.
The use of the detailed balance condition ensures that a system evolving kinetically at a fixed
thermodynamic state (e.g., fixed P,T) always proceeds at long times to the same thermal
equilibrium that CHEETAH would ordinarily predict. In other words, kinetics can be
specified independently of thermodynamics when the detailed balance relation is used.

The user must specify only the slow reactions. The fast reactions are generated
implicitly by the code. Slow reactions are specified by giving stoichiometric coefficients, a
reaction rate law, and parameters for that law. The CHEETAH kinetics framework supports
the implementation of multiple reaction rate laws. As an example, we consider the
transformation of Al + 0.75 O2 -> Al2O3. We must specify to the framework which species
are kinetically controlled and which are thermodynamically controlled. Kinetically controlled
species do not take part in any fast reactions. Thermodynamically controlled species, on the
other hand, are assumed to take part in fast reactions that maintain thermodynamic
equilibrium. In this example we will assume that the Al is kinetically controlled. The O2 and
Al2O3 will be thermodynamically controlled; their concentrations will be kept at equilibrium
with the evolving mix of species. In effect, the calculation will release Al into the reacting mix
as time proceeds. As a reaction rate law, we will use the simple exponential decay: d[Al]/dt =
-a [Al].

The input deck that accomplishes this is the following:

comp, petn, 80, al, 20
fix con, *al, 7.40, mole
point, p, 1000.0, t, 4000.0
kinetics
reaction, *al, -1.0, o2, -0.75, al2o3, 0.5
law, exp decay, 0.1
slow, *al, 7.40
point, v, , e,
time, 0.0, 2.0, 20
end, kinetics

In this calculation, a mix of 80% PETN/20% Al by weight is treated. We start with an
initial Al concentration of 7.40 mole/kg. The initial pressure is 1000 atm, while the initial
temperature is 4000 K. The volume and energy of the reaction cell are fixed at their values at
1000 atm and 4000 K. The reaction rate is specified as 0.1/ms. The kinetics module will
integrate from 0.0 ms to 2.0 ms, taking 20 steps.
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Here is the output of the kinetics calculation:

Chemical Kinetic Run:
Reactions defined:
*al 0.75o2 -> 0.5al2o3

Kinetic law:Simple exponential decay with rate   0.10000
Initial concentrations of kinetically controlled constituents:

*al 7.4000 mol/kg
All other constituents will be kept at equilibrium
The kinetics will be run from t = 0.000 to t = 2.000 in 20 steps
The thermodynamic point command is point, v,, e,
The freezing command is :freeze , *al

Time(us) T(K)  P(atm) V(CC/GM) E(CAL/G)  *al

 0.00 4000.0  1000.0  10.6124 511.16  7.40000

 0.11 4016.0  1004.0  10.6124 511.16  7.32251

 0.21 4031.9  1007.9  10.6124 511.16  7.24584

 0.32 4047.7  1011.9  10.6124 511.16  7.16997

 0.42 4063.4  1015.8  10.6124 511.16  7.09489

 0.53 4079.0  1019.6  10.6124 511.16  7.02060

 0.63 4094.5  1023.5  10.6124 511.16  6.94708

 0.74 4109.9  1027.3  10.6124 511.16  6.87434

 0.84 4125.2  1031.2  10.6124 511.16  6.80236

 0.95 4140.4  1034.9  10.6124 511.16  6.73113

 1.05 4155.5  1038.7  10.6124 511.16  6.66065

 1.16 4170.6  1042.5  10.6124 511.16  6.59090

 1.26 4185.5  1046.2  10.6124 511.16  6.52189

 1.37 4200.3  1049.9  10.6124 511.16  6.45360

 1.47 4215.1  1053.6  10.6124 511.16  6.38602

 1.58 4229.7  1057.3  10.6124 511.16  6.31915

 1.68 4244.3  1060.9  10.6124 511.16  6.25298

 1.79 4258.8  1064.5  10.6124 511.16  6.18751

 1.89 4273.2  1068.1  10.6124 511.16  6.12272

 2.00 4287.5  1071.7  10.6124 511.16  6.05861

As we can see, temperature and pressure increase with time, while the Al
concentration decreases with time. In Figure 1 we show the variation of P with time in this
run.
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Figure 1. The variation of pressure during constant (V,E) Al combustion.

The thermodynamic state defining the reference cell has a determining effect on which
quantities vary and the rate of variation. We repeat the above calculation, but this time with P
and H fixed. Now the volume of the cell increases as P is held fixed. The energy of the cell
decreases as the cell performs PV work on the environment. In Figure 2, we show the
variation of V with time for this calculation.
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Figure 2. The variation of volume during constant (P,H) Al combustion.
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Shock Kinetics

CHEETAH has the capability to perform kinetic detonation calculations. Kinetic
detonation theory was first proposed (independently) in the early 1940s by Zeldovich, Von
Neumann, and Doering.1 The theory was generalized to multiple arbitrary chemical reactions
by Wood and Kirkwood2 in the 1950s. Further explication of the theory and its implications
occurred in the 1960s.4 Despite its age, kinetic detonation theory is still not widely understood
by most practical explosives scientists and engineers. This is partly because the predictions of
kinetic detonation theory are often difficult to measure directly, and partly because most
hydrocode simulations do not take kinetic effects into account. We therefore give a brief
review here.

Kinetic detonation theory describes the behavior of a steady state plane wave shock
propagating in an infinite sea of HE. There is only one relevant spatial direction, which is
normal to the shock front. The basic equations to be solved are the hydrodynamic Euler
equations describing inviscid flow, coupled to chemical kinetic equations. The purpose of
kinetic detonation theory is to describe the long-time, steady-state solutions to the chemical
Euler equations.

The addition of chemical kinetics can add tremendous variety to the possible types of
detonation. Without kinetics, unsupported detonation is completely determined by the CJ
state, while piston-driven detonation is determined by a strong state S on the shock Hugoniot.
This situation is illustrated in Figure 3.

V

P

Shock Hugoniot

S

CJ

R1
R2

Figure 3. The shock Hugoniot, Rayleigh lines, and CJ point for overdriven and CJ
detonation.



UCRL-ID-125794

8 

For CJ detonation, the Rayleigh line R1 (describing conservation of momentum)
intersects the shock Hugoniot (describing conservation of energy). The slope of the Rayleigh
line is proportional to the detonation velocity, so we see that the CJ state is the slowest
propagating state that can intersect the shock Hugoniot (and thus conserve energy).
Detonation waves faster than CJ can exist as piston-supported overdriven states. We show the
Rayleigh line R2 intersecting the shock Hugoniot at the strong detonation point S.

With the introduction of chemical kinetics, the system proceeds along shock
Hugoniots describing the partially reacted HE products.  This situation is shown in Figure 4.

P

V

R

CJ.
.

.

t=0

t=infinity

Figure 4. In ZND detonation, the shock pressure proceeds from the Von Neumann
spike at t=0 to the CJ pressure in the long-time limit.

The pressure profile along the shock front changes from a square wave to a curve
proceeding from the Von Neumann spike. The region in which the pressure is appreciably
different from the CJ pressure is called the reaction zone. This situation is illustrated in
Figure 5. The three points shown on the pressure profile correspond to the points drawn in
Figure 4.

The situation we have described so far, where pressures fall monotonically from the
Von Neumann to the CJ state, are typically called ZND detonation. There are several types of
kinetic detonations, however, that do not fall into the ZND framework. The classic ZND
framework assumes that each partially reacted shock Hugoniot has an intersection with the
Rayleigh line going through the CJ state. It is possible, however, that the partial shock
Hugoniot loses contact with the Rayleigh line. This situation is shown in Figure 6.
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Figure 5. Shock pressures are shown for kinetic and CJ detonation theories.
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Figure 6. Partially reacted shock Hugoniots are shown for the pathological
detonation case.

In the pathological detonation case there is NO possible way for the system to reach
the CJ state. Physically pathological detonations are possible whenever reactions that reduce
the pressure at constant volume and energy are present. The early pressure-producing
reactions then “run ahead” of the late-time pressure-reducing reactions. The late-time reactions
fall behind the sonic plane and therefore do not contribute to the steady state shock front.

We have found that many aluminized explosives can give rise to pathological
detonations because aluminum combustion is a gas-robbing reaction. That is, heat may be
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produced while pressure is reduced. Typically, aluminized explosives make up for this
pressure loss by sustaining higher pressures upon adiabatic expansion from the CJ state, but
this isn't relevant to the present discussion.

In the pathological case, only detonation velocities faster than CJ can propagate. Self-
sustaining detonation occurs at an eigenvalue detonation velocity D*. D* is determined by the
condition that there is no pressure produced by chemical reactions at the point of tangency
between the partially reacted shock Hugoniot and the Rayleigh line. This situation is shown in
Figure 7.

R

R(CJ)

dP/dt = 0

.

Partially reacted
Hugoniot

P

V

Figure 7. The eigenvalue Rayleigh line R is determined by the condition that
dP/dt = 0 at the tangency point.

Wood-Kirkwood Detonation Theory

Wood-Kirkwood theory is more interesting than Zeldovich, Von Newman, and
Doering theory because it is the interplay between the timescale of kinetics and the timescale
of expansion that causes most observed nonideal effects in explosives. Zeldovich, Von
Newman, and Doering theory predicts the existence of a Von Neumann spike and a finite-
width reaction zone. Although these features are of scientific interest, the features of most
practical interest are detonation velocity and the amount of energy delivered by the explosive.
Zeldovich, Von Newman, and Doering theory always predicts the same detonation velocity as
equilibrium CJ theory. The energy delivery upon expansion is not addressed at all in ZND
theory. In WK theory the detonation velocity varies as a function of the relative rates of
reaction and expansion. The theory automatically transitions from the shock front to an
adiabatic expansion, so the energy delivery is a natural output of the theory.

Wood-Kirkwood theory starts with the hydrodynamic Euler equations coupled to
chemical kinetics.  The theory treats the detonation along the center of the cylinder. Radial
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expansion is treated as a first-order perturbation to perfect one-dimensional detonation.
Finally, the Euler equations are reduced to their steady state form. No other approximations
are made in formulating the theory. The result is a set of ordinary differential equations that
describe hydrodynamic variables and chemical concentrations along the center of the cylinder
(Fig. 8).

Multiple

reactions

Steady-state 1-D

hydrodynamics

Radial

expansion

WK
theory

Detonation

velocity

Pressure

profile

Von Neumann

spike

Figure 8. The inputs to and predictions of Wood-Kirkwood detonation theory.

The notation is as follows: we use cylindrical coordinates in a frame moving with the
shock velocity D. x is the axial coordinate and r is the radial coordinate. u is the axial particle
velocity in the moving frame (equal to D-U in the lab frame). The radial velocity is called ω.
Subscripts denote a spatial derivative. Thus, ωr is the derivative of the radial velocity with
respect to radial coordinate; i.e., it is the divergence of the flow. The chemical concentrations
are denoted by a vector F. The chemical kinetic rate laws are written as a vector R . η  and ψ
are reduced variables defined below.

The Wood-Kirkwood2 equations are:

u

u u
E pv

F R u

x

x x r

x x

x

=
= − +

+ =
=

ψ η
ρ ρ ω

/

( / )( )

/

2
0

(8)

The initial conditions are the chemical concentrations (determining F, and the initial
pressure and particle velocity. The initial state variables are found in CHEETAH by finding
the intersection of the Rayleigh line with the unreacted shock Hugoniot. This can be done if
the shock velocity is specified. From this point on, the system visits a series of (p,v) states of
different with different chemical concentrations.

The nature of the WK solutions depends strongly on the reduced variables η  and ψ .
η  = 1 - u2/c2 is called the sonic parameter.5 When η  > 0 the flow is subsonic, and
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communication with the shock front is possible. The flow becomes supersonic and loses
communication with the shock front when η < 0. The equation ψ = (∂P/∂F)V,E* R / ρ2 - ωr is
the pressure production.5 When ψ>0, chemical reactions produce more pressure than is lost
through radial expansion. When ψ<0, there is a net loss of pressure, either through pressure
decreasing reactions or radial expansion. η is unitless, while ψ has units 1/time.

The result of solving the WK equations is the steady state shock profile in a radially
expanding geometry along the center line of the flow. This yields the steady-state wave profile
in the radially expanding geometry.  The problem is then reduced to finding the particular
steady-state solution that is self-propagating (i.e., not overdriven or underdriven).

The equations will be singular if η passes through zero unless ψ becomes zero at that
point also. If ψ goes through zero when η is not zero, steady-state shock propagation at the
specified shock velocity is not possible. It is also possible that η never goes through zero.
These solutions are overdriven. Self-supported detonation occurs at the edge between over-
driven and nonpropagating solutions. η must go through zero exactly when ψ = 0. It is
possible to think of this as a kinetic CJ condition.

The WK equations have been extensively analyzed by Erpenbeck and coworkers.4 It
is found that the detonation velocity depends on the interplay between chemical kinetics and
radial expansion. In the limit of no radial expansion, the ZND plane wave result is obtained.
When radial expansion is allowed, however, the detonation velocity can vary from the CJ
prediction. In the limit of strong radial expansion, the detonation wave fails: no velocity is
found which satisfies the steady-state equations. Bdzil6 has recently generalized WK theory to
off-axis flow.

While WK theory is an important success in explaining qualitative features of
detonation such as failure and the charge diameter effect, it has traditionally been applied only
to the polytropic ideal gas equation of state (EOS):E = pV / (γ - 1). Here the adiabatic
exponent γ = - (∂ln P / ∂ ln V)S.

In condensed explosives, it is known that the adiabatic exponent varies from roughly
3 at the CJ state to roughly 1 after adiabatic expansion. Therefore, the polytropic EOS is
inadequate to quantitatively model condensed explosives. We have recently implemented WK
detonation theory in the CHEETAH thermochemical code. This allows us to study kinetic
effects on detonation in condensed explosives. We find that kinetic effects are probably
significant in most energetic material detonations, even those usually considered “ideal.” We
also find that highly nonideal explosives, such as AP, can be described with some success
through the use of simple empirical reaction rate laws. More detailed chemical kinetic models
will be pursued in the future.

Implementation of WK Theory

In order to implement the WK equations, several elements are needed: the
specification of kinetic laws R, the expansion rate ωr, and the equation of state of the mixture
of detonation products and reactants. A difficulty encountered in implementing WK theory for
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condensed materials is that most of the relevant detailed kinetic laws are unknown. As
discussed above, we specify only a few kinetic laws describing reactions that are thought to
strongly affect the detonation process—for instance, the overall rate of HE consumption.

Expansion Rate

Wood-Kirkwood theory requires the specification of the rate of radial expansion along
the center streamline of the flow. One of the principal difficulties in using WK theory is the
necessity of specifying the radial part of the flow in order to determine the steady state flow
along the axis. Although it is impossible to know the exact nature of the radial flow without
solving the fully coupled 2-D hydrodynamic problem, it is possible to roughly estimate its
magnitude. In cases where the radial expansion produces a small perturbation to plane-wave
propagation, a rough estimate is probably adequate.

We have implemented two radial flow models that have been used by researchers in
the past. The first is simply taking the radial flow rate to be a constant: ωr = C. This is useful
when there is relatively little information known about the problem. The constant C can be
estimated from cylinder test data on a similar HE material: C = Vr/R, where Vr is the radial
expansion velocity of the cylinder wall, and R is the cylinder radius.

The second radial flow model was suggested by Wood and Kirkwood: we take
ωr = (D-u) / Rc . Here, D is the detonation velocity, and u is the particle velocity in the shock
frame. Rc is the radius of curvature of the detonation front, evaluated at the center streamline.
In order to use this model we must have an estimate of the radius of curvature of the
detonation front. Radii of curvature of various explosives have been recently reviewed in a
paper by Souers.7

Equation of State

The equation of state of the HE material is handled by Cheetah’s equilibrium
thermochemical capability. CHEETAH treats a single gas phase in thermodynamic
equilibrium with several independent condensed phases: V = (gas) + V(solid products) +
V(reactants). Here, V is the total volume of the system. We have broken the condensed
phases into two categories for conceptual simplicity: the unreacted HE and solid products
produced by the HE combustion.

We first consider the gas phase equation of state. The most commonly used nonideal
EOS implemented in CHEETAH is the Becker-Kistiakowski-Wilson (BKW) equation of state
(EOS).8 BKW expresses the pressure in terms of effective molecular volumes (usually
referred to as covolumes), and several fixed global EOS parameters:

  

pV nRT x x T
x n ki i

i

/ exp( /( ) .
.

= + +
= ∑

1 β θ α

(9)
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Here, α, β, κ, and θ are global EOS parameters and x is the total molecular volume,
which is based on the covolumes ki and the mole numbers ni. The BKW equation of state,
while lacking a firm basis in statistical mechanics, has been shown to produce reliable
predictions for detonation properties in over 30 years of use. Hobbs and Baer9 have recently
published an extensive library of reaction products based on the BKW equation of state
containing more than 2000 gaseous species and 32 elements. More recently, Fried and
Souers10 have published a smaller, highly optimized BKW library. Fried and Souers have
shown that their parametrization (BKWC) is capable of reproducing detonation velocities with
an average error of less than 1.5% when evaluated for a wide range of compounds containing
the elements H,C,N,O, and F.

The second nonideal gas equation of state is called JCZ3, after its developers, Jacobs,
Cowperthwaite, and Zwissler.11 JCZ3 is based on the Lennard-Jones 6-13.5 potential of
interaction between molecular species: V(rij) = (A/rij)

13.5 - (B./rij).
6 The form of the gas EOS is

based on fits to molecular dynamics simulation of the Buckingham potential. The JCZ3 EOS
has been shown to be effective in reproducing detonation velocities for condensed explosives.

Finally, CHEETAH supports a two-term virial equation of state based on the Lennard-
Jones 6-12 potential. The first virial coefficient is evaluated directly from the virial expansion
of the 6-12 gas, while the expression for the hard-sphere second virial coefficient is used for
the second term. The two-term virial EOS has been successfully used to predict the
thermochemical properties of gun propellants in the BLAKE thermochemical code.12 This
EOS is most suited for the treatment of weakly nonideal gas mixtures.

We use a Murnaghan EOS13 for the unreacted HE equation of state: V(P)
= V0 / (1 + nP/B)1/n, where B is the bulk modulus and n is its pressure derivative. The
Murnaghan EOS is calibrated to the unreacted shock Hugoniot of the explosive material. We
find the Murnaghan EOS to be preferable to more sophisticated forms for the unreacted HE
EOS because there is substantial extrapolation involved in applying the experimental unreacted
shock Hugoniot (usually measured at pressures less than 20 kBar) to the Von Neumann spike
(often 400 kBar).

The unreacted material's heat of formation, standard entropy, and heat capacity are
also specified in kinetic CHEETAH. We use tabulated heats of formation for HE materials.
Standard entropies are usually not known for high explosives. Since the transformation of the
HE into its products is an irreversible reaction, however, the results are not sensitive to the
choice of standard entropy. Finally, the heat of formation is determined by fitting measured
heat capacity data to a single Einstein oscillator model.

For the equation of state of condensed products of detonation (e.g., C and Al2O3) we
use either the Murnaghan EOS with thermal expansion or a simple polynomial EOS:
V(P,T) = ∑Aij Pi Tj. Many product species have been calibrated in the BKWS product
library9 with the polynomial EOS. The Murnaghan EOS with thermal expansion is V(P,T) =
V_0 exp(-a1 T + a2 T

2) / (1 + nP/B)1/n. We use this form when implementing new condensed
product equations of state.
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Solution of the WK Equations

The initial conditions for the WK equations are the energy, density, and composition
at the start of the shock front. We specify the initial composition to be the same as the
unreacted material. The initial energy and density can be determined by specifying the
detonation velocity. Finding the intersection of the unreacted shock Hugoniot with the
Rayleigh line yields the pressure and density at the shock front. A thermodynamic
equilibration at fixed composition then determines the energy at the shock front. Note that the
detonation velocity is treated as a specified quantity here. In the next subsection we will
discuss the determination of the detonation velocity.

As the equations are integrated, the shock wave structure is determined for positions
behind the shock front.  In practice, we use the “Lagrangian time” form of the WK equations,
where the time variable is related to position by dx = u dt. This choice of variables is most
natural for the integration of kinetic laws.

The WK equations support a variety of solutions that have been discussed in great
detail by Erpenbeck.4 Let us consider the behavior of the equations as a function of the
specified detonation velocity D. There are three qualitatively different solutions possible. For
special detonation velocities D = D*, the solutions pass through the sonic plane, defined by η
= 0. Points behind the sonic plane cannot communicate with the shock front. The WK
equations are finite when η = 0 only if ψ also passes through zero. Therefore the sonic
solutions are defined by the nonlinear equation ψ(t,D) = η(t,D) = 0.

The next possibility is that η never passes through zero. These solutions are
overdriven; that is, the pressure increases with distance behind the shock front. These
solutions correspond to a rear piston boundary condition that drives the shock front forward.
Finally, if η = 0 when ψ ≠ 0, the equations become infinite. This means that a steady state
flow cannot occur at the specified detonation velocity D. Of all the solutions generated by the
WK equations, only the sonic solutions D = D* have the pressure tend to zero as x ⇒∞ . It is
these solutions that correspond to steady-state self-propagating flow.

Determination of Self-propagating Solutions

We must find the detonation velocities satisfying

ψ η( , ) ( , )t D t D= = 0 . (10)

Since only a special few (usually just one) detonation velocity corresponds to self-
propagating flow, the sonic solutions have been called “eigenvalue detonations” by previous
researchers. This is somewhat of a misnomer, however, since the nonlinear equation of Eq.
10 cannot be mapped into an eigenvalue problem of linear algebra. Before embarking on the
algorithms used to find sonic solutions, let us remark that Eq. 10 is equivalent to specifying
the rear boundary condition lim x ⇒∞ . p(x) = 0.
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The solution of Eq. 10 is complicated from a numerical point of view, because the
WK equations will become singular for D > D*. We have found it most robust to transform
the root search problem into a minimization. We define a figure of merit function Y to be:

Y D t D t t D
t t

( ) min ( , ) ( , )
max

= +
< <0

2 2 2η ψ . (11)

We have Y = 0 when Eq. 10 holds. ψ is multiplied by t in Y to yield a unitless
function that works equally well for fast or slow reaction rates. The end of the trajectory tmax is
set to be longer than chemical reaction timescales. If a singular solution is encountered (η
goes to zero when ψ is nonzero), tmax is taken to be the time at which the singularity occurs.

We have implemented a specialized minimizer that is efficient at finding minima of Y.
Although the implementation is somewhat cumbersome, the underlying principal is simple:
we need to find minima of Y(D) that are very close to 0. These minima correspond to self-
propagating detonation velocities D*. In some cases no such minima exist; this indicates that
the detonation wave has failed. In other cases more than one minimum exists; this necessitates
an initial scan through values of D in order to bracket the minima. Once each minima is
bracketed, a minimizer based on rational extrapolation is used to find the exact location of
each minimum.

Application to HCNO explosives

An example of Cheetah’s kinetic detonation capabilities might be helpful at this point.
Nitromethane, which is a commonly studied explosive that is thought to be near the ideal
limit, is a good test case. The reaction zone of NM has been estimated to be near 0.5 mm. The
radius of curvature is used to specify expansion transverse to the detonation front by using the
constant expansion model described in Section 3.1 Radii of curvatures and estimated reaction
zones are listed in Table 1.

As a test case we have been studying HMX with two kinetically controlled reactions.
The HMX is first converted to gases with a 10 ns timescale. This timescale is based on
estimates of the reaction zone for ideal explosives like PETN. The gases are assumed to react
rapidly, and are thus always kept in thermal equilibrium with respect to one another. The
second reaction is the precipitation of gaseous species to make condensed carbon. A
1-microsecond timescale is used for this reaction, which is consistent with the reaction zone in
high carbon explosives like TATB.
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Table 1. Reaction zones and radii of curvature estimated for common explosives.

HE
Radius of

curvature (mm)
RXN zone

(mm)

PETN 1770 0.0

HMX 355 0.2

COMP-B 373 0.9

OCTOL 159 1.0

TATB 86 1.6

LX-17 171 2.5

To implement this in CHEETAH, we specified the following chemical reactions:

  

HMX CO H N O
CO C O

→ + + +
→ +

4 4 4 22 2 2

2 2 .
(12)

Only the concentrations of HMX and carbon are controlled by kinetics. The other
concentrations are kept in constant thermal equilibrium. This is equivalent to specifying many
fast gas reactions.

Recall that WK theory treats radial expansion as a perturbation on 1-D flow. We need
to have some way of specifying to the 1-D flow how much radial expansion is occurring.
This requires some sort of radial expansion model. The necessity for having such a model is
one of the main difficulties we must address in developing a WK capability in CHEETAH.
For the time being, we will model the divergence of the flow along the center line as a
constant. This suffices to capture all of the important qualitative features. The expansion
constant has units of 1/time. In Figure 9 we show the predicted variation of detonation
velocity with expansion constant. The models are completely uncalibrated at this point, so
detailed comparison with experiments is not yet appropriate. We estimate that the expansion
constant should be roughly 0.025 m s-1 for a 25-mm cylinder. This number is taken by
dividing the wall velocity by the cylinder radius. Note that there is a discernible (1%) size
effect to the detonation velocity in this regime.

The detonation velocity for moderate or no expansion is higher than Cheetah’s CJ
prediction of 9.6 mm/us. This is due to the carbon kinetics. Kinetic detonations can “run
ahead” of pressure-decreasing reactions. The precipitation of a solid like carbon from a gas is
an example of a pressure-decreasing reaction. Effects like this may help thermochemical codes
to achieve better predictions of the detonation velocity.

In Figure 10, we show the predicted variation of pressure with time for several
expansion constants. The system proceeds from the Von Neumann spike through a sonic
point. Past the sonic point the gases stop communicating with the shock front. The sonic
points are visible as small “blips” on the graph. After the sonic point, the system transitions to
an adiabatic expansion.



UCRL-ID-125794

1 8 

9.3

9.4

9.5

9.6

9.7

9.8

9.9

0.001 0.01 0.1 1

D
 (

m
m

/u
s)

Expansion (1/microsecond)

Detonation velocities as a function of radial expansion

'hmx.d.out'

Figure 9. Predicted detonation velocities for HMX vs radial expansion.

0.0 0.05 0.1 0.15 0.2

Time (10-6 s)

2

4

6

8

*105

P (atm)
Expansion rate = 0

Rate = 0.25 / us

Rate = 0.025 / us

Figure 10. Predicted pressure profiles for HMX kinetic detonations at various
expansion rates.
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Note that the Von Neumann spike is higher in Figure 10 than is commonly supposed
(C. Souers, private communication14). This is due to the unreacted HMX equation of state.
We used the latest EOS put forth by Simpson.15 Using an older HMX unreacted EOS gives
much lower spike pressures. This in turn has the potential to affect the predicted detonation
velocities.

We have performed an initial evaluation of detonation velocities predicted with
CHEETAH’s WK detonation capability. We selected a series of HEs where experimental radii
of curvature were known. We then simply set the radial expansion ωr to be equal to a constant
= UP/Rc, where UP is the particle velocity in the lab frame, and Rc is the experimental radius of
curvature. This relationship is known to hold at the shock front, and becomes more
approximate as the reaction zone lengthens.

The kinetic scheme used was equally simple. We used a single constant reaction rate
for the HE ignition, where the constant was determined by the estimated length of the reaction
zone. Radii of curvature and reaction zones used are shown in Table 1.

The detonation velocities predicted in this way are shown in Figure 11. We find that
the WK theory gives almost precisely the same result as CJ detonation for ideal explosives
like PETN. As the reaction zone lengthens, the WK equations predict a growing departure
from CJ theory. For the compounds with the largest reaction zone (e.g., LX-17) the WK
equations overpredict the kinetic effect. The BKWC equation of state used by CHEETAH
was calibrated to both nonideal and ideal explosives. Thus, there may be some “over-
counting” of the kinetic effect because it was partially taken into account when BKWC was
calibrated. Nonetheless, the WK treatment of the problem does reduce the error in the
predicted detonation velocities. A gas equation of state that is calibrated only to ideal
explosives is probably necessary in order to fully exploit the WK capability of CHEETAH.
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Linked Hydrocodes

There is a substantial need for improvements in the HE equation of state used in
hydrodynamic codes. Current hydrodynamic codes typically use the JWL equation of state to
represent the explosive. The main advantage of the JWL is its speed of evaluation. JWLs
often have limited predictive ability. A manifestation of this is that the HE equation of state
needs to be adjusted for differing device geometries. Using a thermochemical code, such as
CHEETAH, for the HE equation of state should yield a much greater predictive capability.
The HE chemical composition is then a direct input to the hydrodynamic code. The effect of
varying the HE formulation on actual device performance can be determined—a task that is
impossible with a simple JWL equation of state.

Linking a hydrodynamic code to a thermochemical code directly would be
prohibitively slow if the thermochemical code was called on each evaluation of the HE
equation of state. We have overcome this difficulty by using interpolation grids. When the
hydrocode calls the HE equation of state P(V,E), a grid is dynamically filled with data points
from CHEETAH calculations in the desired V,E neighborhood. The exact P(V,E) is then
found from interpolation of the grid points. On subsequent calls to the same V,E
neighborhood, interpolation can be used immediately.

We have linked CHEETAH to the KOWIN 1-D hydrocode. We have then used the
linked code to compare with several plate push experiments. In the plate push experiment, a
plane wave HE detonation is used to push a metal plate forward. The plate velocity is
measured with a Fabry-Perot interferometer. In Figure 12, we show a comparison of
CHEETAH’s prediction for 26 mm of LX-14 pushing 20 mil of tantalum. In general, the
CHEETAH results compare well with the experiment. The CHEETAH results appear to
underpredict the push at low times, but the experimental uncertainty as reflected by the
difference in the two records (corresponding to repeated experiments) also grows in this area.

We have also applied the code to a variety of other HEs. Although there is some
variability in the quality of the results, we find that the errors with nonideal explosives such as
TATB and LX-17 are systematically larger than those for ideal explosives. In Figure 13, we
compare plate velocities for 20 mm of LX-17 pushing 20 mils of tantalum. The linked code
prediction is systematically low in this case. We conjecture that this is due to the lack of a Von
Neumann spike in the linked code. We plan to link kinetic CHEETAH with a hydrocode to
see if the treatment of nonideal explosives can be improved by including the pressure transient
of the spike.
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Figure 12. Predicted vs experimental plate velocities in mm/microsecond for
26 mm of LX-14 pushing a 20-mil tantalum plate.
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Figure 13. Predicted vs experimental plate velocities in mm/microsecond for
20 mm of LX-17 pushing a 20-mil tantalum plate.
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Conclusions

There are many issues that must be addressed before kinetic CHEETAH becomes a practically
useful tool. We have a skeletal algorithmic capability established in CHEETAH. This
capability is in need of scientifically sound models, which in turn must be validated through
experiment. Some particular problems are:

• There have been several models for the expansion rate tried in the past. We need to review
these and compare them with hydrocode simulations of cylinder tests. The ultimate
solution to this problem will be directly linking CHEETAH to a hydrocode.

• The unreacted EOS cannot be measured reliably in the high pressure shock regime.
Molecular dynamics may be the best way to get good unreacted EOSs for CHEETAH.
Comparisons with experimental spike pressures are only meaningful when integrated over
the experimental response time.

• Kinetic detonation theory has the potential to change detonations predicted by CHEETAH
significantly. The BKW parameter set used in CHEETAH may need to be recalibrated to
work with kinetics. Or (preferably), we may need to move to more sophisticated gas
equations of state. Even in this case, we may need separate calibrations for kinetic and
nonkinetic detonation calculations.

• Very little is known about kinetics in the detonation regime.  We are starting with a “back
of the envelope” approach now. In the future more sophisticated models will probably be
necessary. We must be careful not to let the level of model sophistication develop too far
from the meager experimental data.
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